

The Complete Tech Video Library

Table of Contents

Torque Specifications01
Electrical Case Connector 1991 - 199902
Electrical Case Connector 2000 - Up
Solenoid/Clutch and Band Application Chart04
Overdrive Housing
Adapter Case Valve Body07
Center Support
Center Support Plates12
OD Planet
Overrun Clutch
OD Clutch
Input Shaft
Pump/Bell Housing17
Case
Valve Body
Valve Body Modifications
Planetary
2nd Clutch
2nd Clutch Apply Ring Different Heights
3rd Clutch
Reverse Clutch
Assembly
Special Tools

Torque Specifications

Seperator Plate to V. B.	113 lb.in
V. B. to Case	15 lb. ft.
Servo Cover to Case	18 lb. ft.
Pan (Front and Rear)	96 lb. in.
Pump to Bell Housing	15 lb. ft.
Bell Housing to Main Case	29 lb. ft.
Center Support to Overdrive Housing	18 lb. ft.
Solenoids to Valvebody	87 lb. in.
Extension Housing to Main Case	24 lb. ft.

Fluid Type and Capacity

Fluid Type Dextron III Capacity 9.2 Qts. (Empty)

Electrical Case Connector 1991 - 1999

Connector A

1	Force Motor Control (-)	3-7 Ohms
2	Force Motor Control (+)	3-7 Ohms
3	TFT Sensor Input	See Chart
4	Torque Converter Clutch Solenoid	17.5-18.5 Ohms
5	TFT Sensor Ground	See Chart

NOTE: Test Between Terminal 4 and Case Ground for TCC Solenoid Resistance

1	2-3 Shift Solenoid	17.5-18.5 Ohms
2	Band Apply Solenoid	10-12 Ohms
3	1-2/3-4 Shift Solenoid	17.5-18.5 Ohms
4	Solenoid Power	

NOTE: Test Between Terminal 4 and 1, 2 and 3 for Solenoid Resistance

Connector **B**

Electrical Case Connector 2000 - Up

Connector A

NOTE:

Test Between Terminal 2 and 3, 6 and 7 for Solenoid Resistance

1	Torque Converter Clutch Solenoid (B+)	9.5-10.5 Ohms				
2	Pressure Control Solenoid (+)	3-7 Ohms				
3	Torque Converter Clutch Solenoid Control	9.5-10.5 Ohms				
4	Pressure Control Solenoid (-)	3-7 Ohms				

1	TFT Sensor Ground	See Chart			
2	Solenoid Power				
3	1-2/3-4 Shift Solenoid Control	18-20 Ohms			
4	TFT Sensor Input	See Chart			
6	2-3 Shift Solenoid Control	18-20 Ohms			
7	Band Apply Solenoid Control	10-12 Ohms			

Transmission Fluid Temperature Sensor Chart for all years

°C	°F	Resistance (kOHM)
- 40	- 40	672
0	32	65
20	68	25
80	176	2.5
120	248	0.78
150	304	0.37

Line Pressure Test Port and Specifications

Line Pressure

Mode	Lever	Engine	Line Pr	ressure	Force Motor Current (mA)	
mode	Position	Speed	kPa	PSI		
Normal/Power	D,3,2,L	Idle	590-730	86-106	680-720	
Winter	D	Idle	300-390	44-57	1,020-1,060	
Normal/Power Winter	Reverse	Idle	460-630	67-91	880-920	
Normal/Power	D,3,2,L	Stall Speed	1,250- 1,380	181-200	70-110	
Winter	D	Stall Speed	1,250- 1,380	181-200	70-110	
Normal/Power Winter	Reverse	Stall Speed	1,400- 1,580	203-229	340-380	

Solenoid/Clutch and Band Application Chart

Range	Gear	1-2/ 3-4 Sol. N.C.	2-3 Sol. N.O.	O/Drive Roller Clutch	Overrun Clutch	Fourth Clutch	Third Clutch	Reverse Clutch	Second Clutch	Low Sprag	Band	Engine Braking
P-N		OFF	ON		Applied							NO
R	Rev.	OFF	ON	LD	Applied			Applied		LD		NO
	1st	OFF	ON	LD	Applied					LD	Applied	NO
	2nd	ON	ON	LD	Applied				Applied	FW	Applied	YES
	3rd	ON	OFF	LD	Applied		Applied		Applied	NE		YES
	4th	OFF	OFF	FW		Applied	Applied		Applied	NE		YES
	1st	OFF	ON	LD	Applied					LD	Applied	NO
3	2nd	ON	ON	LD	Applied				Applied	FW	Applied	YES
	3rd	ON	OFF	LD	Applied		Applied		Applied	NE		YES
2	1st	OFF	ON	LD	Applied		Applied			LD	Applied	YES
	2nd	ON	ON	LD	Applied				Applied	FW	Applied	YES
L	1st	OFF	ON	LD	Applied		Applied			LD	Applied	YES

Overdrive Housing

Checking Adapter Case for Warpage max Deflection .0015-.002

Removing Overdrive Piston return Spring using Tool made from A404 Reverse Band

Adapter Case Check Ball Location (Some Models)

Overdrive Housing Cont'd

Lube Orifice

Lube Orifice Location in Overdrive Housing

Early and Late 3-4 Accumulator Covers. Do Not Interchange

3-4 Accumulator Stack Up

Adapter Case Valve Body

Cast Iron and Aluminum Adapter Case Valve Bodies will Interchange

Plates

Difference in this area will Interchange

One Hole Does Not Take Check Ball in Adapter Adapter Case Valve Body Seperator Case Two Holes Do

Adapter Case Valve Body Seperator Plates

Adapter Case Valve Body Cont'd

Adapter Case Valve Body On/Off and **PWM Torque Converter Clutch Valve** Bodies are the Same

1

3 Different EPC Solenoids #1 Bosch Type Used up until 2000 #2 Ford Type Used 2000 up #3 4L60E Replacement (may give high line pressure)

Keep Old Solenoid in Case you have a Problem with Line Pressure

On/Off and PWM Torque Converter Clutch Solenoids On/Off Solenoid has Built on Retainer Resistance 17.9 OHMS PWM Solenoid Does Not have Built on Retainer Resistance 10.6 OHMS

Center Support

Center Support with Plain Selective Washer

Center Support with Three Tab Selective Washer

Center Support Cont'd

Type 1 Center Support uses Roll Pins to Retain Valve End Plugs

Type 1 Support with Valves Out. Reverse Inhibit Valve Not used in All Models

Type 2 Center Support uses Plates to Retain Valve End Plugs

Type 2 Center Support with Valves Out. Reverse Inhibit Valve not used in All Models

Center Support Cont'd

Checking 3rd Clutch Drum Support Bushing. Use 1/4" Wide Piece of Scotch Tape on Shaft and See if Drags on Bushing.

Checking Center Support for Warpage Max Deflection .0015 - .002

Center Support Plates

Center Support Spacer Plate with Reverse Inhibit Valve

Center Support Spacer Plate without Reverse Inhibit Valve

OD Planet

Checking Overdrive Planet Pinion Endplay. Clearance should be .009 - .025

Overdrive Sprag Rotation

Install Overdrive Sun Gear with Lube Slot Short Offset Down Toward Drum

Overrun Clutch

Overrun Clutch Stack Up with Two Frictions (Goes with Picture on Page 4)

Overrun Clutch Stack Up with Wave Plate

OD Clutch

Early Groove Depth is .150 Late Groove Depth is .180

Two Different Overdrive Clutch Apply Pistons and Seals

Wide and Narrow Lip Seals to Match Piston

Checking Overdrive Clutch Clearance with Additional Friction. Keep to a Minimum of .040 - .045 if using Additional Friction

OD Clutch Cont'd

Overdrive Clutch Stack Up

If Clearance Permits an Additional Friction can be added between the Two Center Steels

Input Shaft

Always Use a Solid Teflon Ring in the Front Ring Location

On/Off Torque Converter Clutch has a Check Ball in the End of the Input Shaft. PWM Torque Converter Clutch Does Not

Pump/Bell Housing

Always Check Sleeve for Wear or Replace

ISUZU Part # 8-96018-472-0 SONNAX Part # 54754-02

Throttle Signal Accumulator 2 & 4 Valve Pumps

Pump/Bell Housing Cont'd

Checking Inner Pump Gear Clearance. Clearance should be .0015 - .002 Max

When Installing Front Pump Bushing make sure Bushing doesn't petrude into Channel in Bell Housing

Must use Tool to Align Bell Housing to Pump Body during Reassembly

Pump/Bell Housing Cont'd

Difference is in this area!

On/Off Torque Converter Clutch Bell Housing

PWM Torque Converter Clutch Bell Housing

On/Off Torque Converter Clutch Pump Wear Plate

PWM Torque Converter Clutch Pump Wear Plate

<u>Case</u>

Type 1 Valve Body Plate Must Match Case

Type 1 Case

Type 2 Valve Body Plate Must Match Case

Type 2 Case

Case Cont'd

Check Ball Locations in Case

Drilled Case to Check Servo Release Pressure

Valve Body

May Not have a Spring in this Location Model Dependent

Main Valve Body Shift Solenoid Resistance 17.5-18.5 OHMS. Band Apply Solenoid Resistance 10 OHMS

Check Ball Location in Valve Body

1-2/3-4

2-3

1-2/3-4 Shift Solenoid is Normally Closed

2-3 Shift Solenoid is Normally Open

Resistance of Solenoids 17.5 - 18.5 Ohms.

NOTE: Position of Line Up Tabs

Valve Body Modifications

To Help Feed 2nd & 3rd Clutch Circuits Drill to .090 Type 1 Case

Type 1 Valve Body Plate

To Help Feed 2nd & 3rd Clutch Circuits Drill to .090 Type 2 Case

Type 2 Valve Body Plate

Planetary

2:40 First Gear Planet Pinions 23 Teeth Front and Rear this Planet Does Not have to be Timed on Assembly

2:86 First Gear Planet Pinions 23 Teeth Front 19 Teeth Rear This Planet Must Be Timed on Assembly

Align Timing Marks on 2:86 First Gear Ratio Planetary

Checking Planet Pinion Endplay Clearance Should be .005 - .035

2nd Clutch

5 Friction 2nd Clutch Stack-Up with Wave Plate on Bottom. No Published Clutch Clearance Rule of Thumb .010 -.015 per Friction can use TH180 .070 Steels in Combination to Adjust Six Friction 2nd Clutch Stack-Up with Wave Plate on Bottom. No published Clutch Clearance. Rule of Thumb .010 -.015 per Friction can use TH180 .070 Steels in Combination to Adjust

Six Friction 2nd Clutch Stack-Up with Wave Plates on Top and Bottom no published Clutch Clearance. Rule of Thumb .010 - .015 per Friction can use TH180 .070 Steels in Combination to Adjust

2nd Clutch Cont'd

2nd Clutch Apply Ring Different Heights

2nd Clutch Cont'd

There are Two Different 2nd Clutch Drums. When Replacing Drum Always Check Washer Face to Top of Snap Ring Height. If Short Drum is Installed in Place of Tall the 3rd Clutch Drum will Hit the Spring Retainer. Short Drum approx. .102 Tall Drum Appox. .178

Check 2nd Clutch Drum for Cracks in this Area

Ring Gear is Installed with Flat Side Down

3rd Clutch

5 Friction 3rd Clutch Stack-Up. Dish Plate on Bottom with Dish Down uses .098 Frictions and .083 Steels

Early 5 Friction 3rd Clutch with Steel on top and Bottom. Dish Plate on Bottom with Dish Down

6 Friction 3rd Clutch Stack-Up. Dish Plate on Bottom with Dish Down. Uses .062 Frictions and .083 Steels

Tools in Position to Remove Low Sprag Race from 3rd Clutch Drum

3rd Clutch Cont'd

Checking 3rd Clutch Clearance with Drill Bit. No Published Specification. Rule of Thumb is .010 - .015. Clearance per Friction can use combinations of .062 -.098 Frictions and .070 and .083 Steels to get to desired Clearance

Low Sprag Rotation

Reverse Clutch

Checking Reverse Clutch Clearance Before Assembly. No Published Specification. Rule of Thumb .010 - .015 per Friction. Can use .070 Thin Steels in Combination with .083 Steels to Adjust

Reverse Clutch Stack Up, Wave Plate Goes on Top Toward Clutch Apply Piston

Assembly

Checking Rear Unit Endplay. Clearance should be .014 - .031 Washer is Selective

Checking Front Unit Endplay Clearance should be .004 - .030 Washer is Selective

To adjust 1-2 band tighten servo adjusting screw to 40 inch pounds and back off 5 turns

Using special tool to remove and install 1-2 servo

Sealing Ring on Parking Gear

Special Tools

Tools to Disassemble 3rd Clutch Drum made from .010 - .012 Spring Steel 3/16" Wide

Late Model 3-4 Accumulator Cover Removal Tool Kent Moore Tool # J-46260-1

Early Model 3-4 Accumulator Cover Removal Tool Kent Moore Tool # J-38552

Special Tools Cont'd

1-2 Servo Sealing Ring Compressor. Kent Moore Tool # J-38428

1-2 Servo Spring Compressor Tool made from Saver Bar

OD Clutch Spring Compressor

Produced by AAMCO Transmissions, Inc. Technical Service Department

For exclusive use of licensed AAMCO dealers ONLY. Any Unauthorized use or reproduction, by any means, of the illustrations or text in this book is a copyright violation and a criminal offense punishable by fine, imprisonment or both

©2007 AAMCO Transmissions, Inc. All Rights Reserved. Printed in U. S. A. 83A-0421